
Steve Abbott, February 12, 2019

PROGRAMMING MULTI-GPU NODES

2

AGENDA
Multi-GPU Programming Models

Multi-GPU Programming with OpenACC and CUDA

3

CPU 0

256 GB
(DDR4)

SUMMIT NODE
(2) IBM POWER9 + (6) NVIDIA VOLTA V100

(50 GB/s)NVLink2

GPU 0 GPU 1 GPU 2

16 GB
(HBM2)

16 GB
(HBM2)

16 GB
(HBM2)

0 (0-3)

8 (32-35)

16 (64-67)

1 (4-7)

9 (36-39)

17 (68-71)

2 (8-11)

10 (40-43)

18 (72-75)

3 (12-15)

11 (44-47)

19 (76-79)

4 (16-19)

12 (48-51)

20 (80-83)

5 (20-23)

13 (52-55)6 (24-27)

14 (56-59)7 (28-31)

15 (60-63)

CPU 1

256 GB
(DDR4)

GPU 3 GPU 4 GPU 5

16 GB
(HBM2)

16 GB
(HBM2)

16 GB
(HBM2)

22 (88-91)

30 (120-123)

38 (152-155)

23 (92-95)

31 (124-127)

39 (156-159)

24 (96-99)

32 (128-131)

40 (160-163)

25 (100-103)

33 (132-135)

41 (164-167)

26 (104-107)

34 (136-139)

42 (168-171)

27 (108-111)

35 (140-143)28 (112-115)

36 (144-147)29 (116-119)

37 (148-151)

64 GB/s

135 GB/s 135 GB/s

(900 GB/s)

4

MULTI-GPU
PROGRAMMING

MODELS

5

MULTI-GPU PROGRAMMING MODELS

Single Thread, Multiple GPUs

• A single thread will change devices as-needed to send data and kernels to different GPUs

Multiple Threads, Multiple GPUs

• Using OpenMP, Pthreads, or similar, each thread can manage its own GPU

Multiple Ranks, Single GPU

• Each rank acts as-if there’s just 1 GPU, but multiple ranks per node use all GPUs

Multiple Ranks, Multiple GPUs

• Each rank manages multiple GPUs, multiple ranks/node. Gets complicated quickly!

6

MULTI-GPU PROGRAMMING MODELS
Trade-offs Between Approaches

Single Thread, Multiple
GPUs

Multiple Threads, Multiple
GPUs

Multiple Ranks, Single GPU Multiple Ranks, Multiple
GPUs

• Little to no code

changes required

• Re-uses existing

domain

decomposition

• Probably already

using MPI

• Watch affinity

• Conceptually Very

Simple

• Set and forget the

device numbers

• Relies on external

Threading API

• Can see improved

utilization

• Watch affinity

• Conceptually

Simple

• Requires

additional loops

• CPU can become a

bottleneck

• Remaining CPU

cores often

underutilized

• Easily share data

between peer

devices

• Coordinating

between GPUs

extremely tricky

7

MULTI-DEVICE CUDA

CUDA by default exposes all devices,

numbered 0 – (N-1), if devices are not all the

same, it will reorder the “best” to device 0.

Each device has its own pool of streams.

If you do nothing, all work will go to Device

#0.

Developer must change the current device

explicitly

8

MULTI-DEVICE OPENACC

OpenACC presents devices numbered 0 – (N-1)

for each device type available.

The order of the devices comes from the

runtime, almost certainly the same as CUDA

By default all data and work go to the current

device

Developers must change the current device

and maybe the current device type using an

API

9

MULTI-DEVICE OPENMP

OpenMP devices numbered 0 – (N-1) for ALL

devices on the machine, including the host.

The order is determined by the runtime, but

devices of the same type are contiguous.

To change the device for data and compute a

clause is added to directives.

Device API routines include a devicenum

10

MULTI-GPU
PROGRAMMING WITH
OPENACC AND CUDA

11

MULTI-GPU W/ CUDA AND OPENACC

The CUDA and OpenACC approaches are sufficiently similar, that I will demonstrate using

OpenACC.

Decoder Ring:

OpenACC CUDA

acc_get_device_type() N/A

acc_set_device_type() N/A

acc_set_device_num() cudaSetDevice()

acc_get_device_num() cudaGetDevice()

acc_get_num_devices() cudaGetDeviceCount()

12

Multi-Device Pipeline

We’ll use a simple image filter to demonstrate
these techniques.

No inter-GPU communication required

Pipelining: Breaking a large operation into
smaller parts so that independent operations can
overlap.

Since each part is independent, they can easily
be run on different devices. We will extend the
filter to run on more than one device.

A Case Study

13

Pipelining in a Nutshell

H2D kernel D2H H2D kernel D2H

H2D kernel D2H

H2D kernel D2H

Two Independent Operations Serialized

Overlapping Copying and Computation

NOTE: In real

applications,

your boxes will

not be so evenly

sized.

H2D kernel D2H

H2D kernel D2H

14

Multi-device Pipelining in a Nutshell

H2D kernel D2H H2D kernel D2H

H2D kernel D2H

H2D kernel D2H

H2D kernel D2H

H2D kernel D2H

D
e
v
ic

e
 0

D
e
v
ic

e
 1

15

Pipelined Code
#pragma acc data create(imgData[w*h*ch],out[w*h*ch])

copyin(filter)
{
for (long blocky = 0; blocky < nblocks; blocky++)
{

long starty = MAX(0,blocky * blocksize - filtersize/2);
long endy = MIN(h,starty + blocksize + filtersize/2);

#pragma acc update device(imgData[starty*step:blocksize*step]) async(block%3)
starty = blocky * blocksize;
endy = starty + blocksize;

#pragma acc parallel loop collapse(2) gang vector async(block%3)
for (y=starty; y<endy; y++) for (x=0; x<w; x++) {

<filter code ommitted>
out[y * step + x * ch] = 255 - (scale * blue);
out[y * step + x * ch + 1] = 255 - (scale * green);
out[y * step + x * ch + 2] = 255 - (scale * red);

}
#pragma acc update self(out[starty*step:blocksize*step]) async(block%3)
}
#pragma acc wait
}

Cycle between 3 async

queues by blocks.

16

Pipelined Code
#pragma acc data create(imgData[w*h*ch],out[w*h*ch])

copyin(filter)
{
for (long blocky = 0; blocky < nblocks; blocky++)
{

long starty = MAX(0,blocky * blocksize - filtersize/2);
long endy = MIN(h,starty + blocksize + filtersize/2);

#pragma acc update device(imgData[starty*step:blocksize*step]) async(block%3)
starty = blocky * blocksize;
endy = starty + blocksize;

#pragma acc parallel loop collapse(2) gang vector async(block%3)
for (y=starty; y<endy; y++) for (x=0; x<w; x++) {

<filter code ommitted>
out[y * step + x * ch] = 255 - (scale * blue);
out[y * step + x * ch + 1] = 255 - (scale * green);
out[y * step + x * ch + 2] = 255 - (scale * red);

}
#pragma acc update self(out[starty*step:blocksize*step]) async(block%3)
}
#pragma acc wait
}

Cycle between 3 async

queues by blocks.

Wait for all blocks to

complete.

17

NVPROF Timeline of Pipeline

19

Extending to multiple devices

Create 1 OpenMP thread on the CPU per-device. This is not strictly necessary, but
simplifies the code.

Within each thread, set the device number.

Divide the blocks as evenly as possible among the CPU threads.

20

Multi-GPU Pipelined Code
(OpenMP)

#pragma omp parallel num_threads(acc_get_num_devices(acc_device_default))
{

acc_set_device_num(omp_get_thread_num(),acc_device_default);
int queue = 1;

#pragma acc data create(imgData[w*h*ch],out[w*h*ch])
{

#pragma omp for schedule(static)
for (long blocky = 0; blocky < nblocks; blocky++) {

// For data copies we need to include the ghost zones for the filter
long starty = MAX(0,blocky * blocksize - filtersize/2);
long endy = MIN(h,starty + blocksize + filtersize/2);

#pragma acc update device(imgData[starty*step:(endy-starty)*step]) async(queue)
starty = blocky * blocksize;
endy = starty + blocksize;

#pragma acc parallel loop collapse(2) gang vector async(queue)
for (long y = starty; y < endy; y++) { for (long x = 0; x < w; x++) {

<filter code removed for space>
}}

#pragma acc update self(out[starty*step:blocksize*step]) async(queue)
queue = (queue%3)+1;

}
#pragma acc wait

}
}

Spawn 1 thread per

device.

Set the device number

per-thread.

Divide the work

among threads.

Wait for each device

in its thread.

21

Multi-GPU Pipelined Performance

0.51X

1.00X

1.69X

2.66X

2.92X

0.00X

0.50X

1.00X

1.50X

2.00X

2.50X

3.00X

3.50X

Original Pipelined 2 Devices 4 Devices 8 Devices

S
p
e
e
d
-u

p
 f

ro
m

 s
in

g
le

 d
e
v
ic

e

Source: PGI 17.3, NVIDIA Tesla P100 (DGX-1)

Crosses quad

boundary

22

OpenACC with MPI

Domain decomposition is performed using MPI ranks

Each rank should set its own device

• Maybe acc_set_device_num

• Maybe handled by environment variable (CUDA_VISIBLE_DEVICES)

GPU affinity can be handled by standard MPI task placement

Multiple MPI Ranks/GPU (using MPS) can work in place of OpenACC work
queues/CUDA Streams

23

Setting a device by local rank
// This is not portable to other MPI libraries
char *comm_local_rank = getenv("OMPI_COMM_WORLD_LOCAL_RANK");
int local_rank = atoi(comm_local_rank);
char *comm_local_size = getenv("OMPI_COMM_WORLD_LOCAL_SIZE");
int local_size = atoi(comm_local_size);
int num_devices = acc_get_num_devices(acc_device_nvidia);

#pragma acc set device_num(local_rank%num_devices) \
device_type(acc_device_nvidia)

You may also try using MPI_Comm_split_type() using

MPI_COMM_TYPE_SHARED or OMPI_COMM_TYPE_SOCKET.

In the end, you need to understand how jsrun/mpirun is placing your

ranks.

Determine a unique ID

for each rank on the

same node.

Use this unique ID to

select a device per

rank.

24

MPI Image Filter (pseudocode)
if (rank == 0) read_image();
// Distribute the image to all ranks
MPI_Scatterv(image);

MPI_Barrier(); // Ensures all ranks line up for timing
omp_get_wtime();
blur_filter(); // Contains OpenACC filter
MPI_Barrier(); // Ensures all ranks complete before timing
omp_get_wtime();

MPI_Gatherv(out);
if (rank == 0) write_image();

$ jsrun –n 6 –a 1 –c 1 –g 1 ...

There’s a variety of ways to do MPI decomposition, this is what I used for

this particular example.

Decompose image

across processes

(ranks)

Receive final parts

from all ranks.

Launch with good

GPU/process affinity

25

Multi-GPU Pipelined Performance (MPI)

1.00X

1.53X

2.83X

4.89X

0.00X

1.00X

2.00X

3.00X

4.00X

5.00X

6.00X

7.00X

8.00X

9.00X

1 Device 2 Devices 4 Devices 8 Devices 16 Devices

S
p
e
e
d
-u

p
 f

ro
m

 o
n
e
 d

e
v
ic

e

Source: PGI 17.3, NVIDIA Tesla P100 (DGX-1), Communication Excluded

Crosses quad

boundary

26

Multi-GPU Pipelined Performance (MPI)

1.00X

1.53X

2.83X

4.89X

8.51X

0.00X

1.00X

2.00X

3.00X

4.00X

5.00X

6.00X

7.00X

8.00X

9.00X

1 Device 2 Devices 4 Devices 8 Devices 16 Devices

S
p
e
e
d
-u

p
 f

ro
m

 o
n
e
 d

e
v
ic

e

Source: PGI 17.3, NVIDIA Tesla P100 (DGX-1), Communication Excluded

Crosses quad

boundary

Crosses node

boundary

27

MULTI-DEVICE CUDA

#pragma omp parallel

{

cudaSetDevice (idx);

#pragma omp for

for (int b=0; b < nblocks ; b++)

{

cudaMemcpyAsync (é, streams[b%3]);

blur_kernel <<<griddim , blockdim ,

0, streams[b%3] >>>();

cudaMemcpyAsync (é, streams[b%3]);

}

cudaDeviceSynchronize ();

}

MPI_Comm_rank(local_comm , & local_rank);

cudaSetDevice (local_rank);

for (int b=0; b < nblocks ; b++)

{

cudaMemcpyAsync (é, streams[b%3]);

blur_kernel <<<griddim , blockdim ,

0, streams[b%3] >>>();

cudaMemcpyAsync (é, streams[b%3]);

}

cudaDeviceSynchronize ();

Same Pattern, Different API

28

MULTI-DEVICE OPENMP 4.5

#pragma omp parallel num_threads (num_dev)

{

#pragma omp for

for (int b=0; b < nblocks ; b++)

{

#pragma omp target update map(to:…) \

device(dev) depend(inout:A) \

nowait

#pragma omp target teams distribute \

parallel for simd device(dev) \

depend(inout:A)

for(é) { é }

#pragma omp target update map(from:…) \

device(dev) depend(inout:A) \

nowait

}

#pragma omp taskwait

}

MPI_Comm_rank(local_comm , & local_rank);

int dev = local_rank ;

for (int b=0; b < nblocks ; b++)

{

#pragma omp target update map(to:…) \

device(dev) depend(inout:A) \

nowait

#pragma omp target teams distribute \

parallel for simd device(dev) \

depend(inout:A)

for(é) { é }

#pragma omp target update map(from:…) \

device(dev) depend(inout:A) \

nowait

}

#pragma omp taskwait

Same Pattern, Different API

29

Multi-GPU Approaches

Single-Threaded, Multiple-GPUs – Requires additional loops to manage devices,
likely undesirable.

Multi-Threaded, Multiple-GPUs – Very convenient set-and-forget the device. Could
possibly conflict with existing threading.

Multiple-Ranks, Single-GPU each – Probably the simplest if you already have MPI, he
decomposition is done. Must get your MPI placement correct

Multiple-Ranks, Multiple-GPUs – Can allow all GPUs to share common data
structures. Only do this is you absolutely need to, difficult to get right.

Choosing an approach

30

CLOSING SUMMARY

31

MULTI-GPU APPROACHES

Single-Threaded, Multiple-GPUs – Requires additional loops to manage devices, likely
undesirable.

Multi-Threaded, Multiple-GPUs – Very convenient set-and-forget the device. Could possibly
conflict with existing threading.

Multiple-Ranks, Single-GPU each – Probably the simplest if you already have MPI, he
decomposition is done. Must get your MPI placement correct

Multiple-Ranks, Multiple-GPUs – Can allow all GPUs to share common data structures. Only do
this is you absolutely need to, difficult to get right.

Choosing an approach

32

GPU TO GPU COMMUNICATION

CUDA aware MPI functionally portable

OpenACC/MP interoperable

Performance may vary between on/off node, socket, HW support for GPU Direct

WARNING: Unified memory support varies wildly between implementations!

Single-process, multi-GPU

Enable peer access for straight forward on-node transfers

Multi-process, single-gpu

Pass CUDA IPC handles for on-node copies

Combine for more flexibility/complexity!

33

ESSENTIAL TOOLS AND TRICK

Pick on-node layout with OLCF jsrun visualizer

https://jsrunvisualizer.olcf.ornl.gov/index.html

Select MPI/GPU interaction with jsrun --smpiargs

“-gpu” for CUDA aware, “off” for pure GPU without MPI

Profile MPI and NVLinks with nvprof

Good performance will require experimentation!

